organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(2,4-Dichlorophenyl)-3-[4-(dimethylamino)phenyl]prop-2-enone

Navin N. Bappalige,^a Brinda,^b* Y. Narayana^a and V. Upadyaya^c

^aDepartment of Physics, Mangalore University, Mangalagangothri, Mangalore 574 199. India. ^bSolid State and Structural Chemistry Unit. Indian Institute of Science. Bangalore 560 012, India, and ^cDepartment of Physics, Manipal Institute of Technology, Manipal 576 104, India

Correspondence e-mail: brinda@sscu.iisc.ernet.in

Received 16 March 2009; accepted 23 April 2009

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.106; data-to-parameter ratio = 15.1.

In the title compound, C17H15Cl2NO, the dimethylaminophenyl group is close to coplanar with the central propenone group [dihedral angle = $13.1 (1)^\circ$ between the mean planes], while the dichlorophenyl group is twisted from the plane [dihedral angle = 64.0 (1)°]. In the crystal, $C-H \cdots O$ and weak $C-H\cdots\pi$ interactions are formed between molecules.

Related literature

For related structures, see: Murafuji et al. (1999); Liu et al. (2002); Patil et al. (2007a,b); Rosli et al. (2007).

Experimental

Crystal data C17H15Cl2NO $M_r = 320.20$

Monoclinic, $P2_1/c$ a = 8.5741 (19) Å

b = 12.706 (3) Å	Mo $K\alpha$ radiation
c = 14.671 (3) Å	$\mu = 0.41 \text{ mm}^{-1}$
$\beta = 102.645 \ (4)^{\circ}$	T = 290 K
V = 1559.5 (6) Å ³	$0.25 \times 0.15 \times 0.07 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX CCD area-	11540 measured reflections
detector diffractometer	2908 independent reflections
Absorption correction: multi-scan	2039 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.031$
$T_{\min} = 0.923, T_{\max} = 0.972$	

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.042 \\ wR(F^2) = 0.106 \end{array}$ 192 parameters H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$ 2908 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12-H12\cdots O1^{i}$ $C4-H4\cdots Cg1^{ii}$	0.93 0.93	2.55 2.95	3.252 (3) 3.784 (3)	132 150

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$. Cg1 is the centroid of the C10-C15 ring.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA-DST program at IISc.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2360).

References

- Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Liu, Z.-Q., Fang, Q., Yu, W.-T., Xue, G., Cao, D.-X. & Jiang, M.-H. (2002). Acta Cryst. C58, 0445-0446.
- Murafuji, T., Sugihara, Y., Moriya, T., Mikata, Y. & Yan, S. (1999). New J. Chem. 23, 683-685.
- Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, 01738-01740.
- Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, 03253-03254.
- Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2692.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155
- Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supplementary materials

Acta Cryst. (2009). E65, o1266 [doi:10.1107/81600536809015177]

1-(2,4-Dichlorophenyl)-3-[4-(dimethylamino)phenyl]prop-2-enone

N. N. Bappalige, Brinda, Y. Narayana and V. Upadyaya

Experimental

A solution of potassium hydroxide (6.25 g, 0.11 mol) in ethanol (25 ml) was added slowly to a mixture of dichloroacetophenone (18.8 g, 0.01 mol) and *N*-dimethyl benzaldehyde (14.9 g, 0.01 mol) in a conical flask. After stirring for two hours, the precipitate was filtered and recrystallized from ethanol to give pale orange crystals.

Refinement

H atoms were positioned geometrically with C—H bond lengths of 0.93–0.96 Å and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level for non-H atoms. H atoms are shown as small spheres of arbitrary radius.

Fig. 2. Packing diagram. The dotted lines indicate intermolecular C—H…O and C—H… π interactions.

1-(2,4-Dichlorophenyl)-3-[4-(dimethylamino)phenyl]prop-2-enone

Crystal data	
C ₁₇ H ₁₅ Cl ₂ NO	$F_{000} = 664$
$M_r = 320.20$	$D_{\rm x} = 1.364 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3980 reflections
<i>a</i> = 8.5741 (19) Å	$\theta = 2.0 - 26.0^{\circ}$
b = 12.706 (3) Å	$\mu = 0.41 \text{ mm}^{-1}$
c = 14.671 (3) Å	T = 290 K

 $\beta = 102.645 (4)^{\circ}$ $V = 1559.5 (6) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2908 independent reflections
Radiation source: fine-focus sealed tube	2039 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.031$
T = 290 K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.923, T_{\max} = 0.972$	$k = -15 \rightarrow 15$
11540 measured reflections	$l = -16 \rightarrow 17$

Block, orange

 $0.25 \times 0.15 \times 0.07 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.106$	$w = 1/[\sigma^2(F_o^2) + (0.0505P)^2 + 0.1972P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
2908 reflections	$\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$
192 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.42606 (8)	-0.03118 (5)	0.21634 (5)	0.0704 (2)
Cl2	0.33039 (10)	0.29372 (6)	0.42942 (5)	0.0851 (3)

C13	0.2618 (2)	0.71607 (15)	-0.03057 (14)	0.0421 (5)
C10	0.1972 (2)	0.54646 (15)	0.08139 (14)	0.0414 (5)
C9	0.1721 (2)	0.45849 (17)	0.13874 (15)	0.0461 (5)
Н9	0.2244	0.3964	0.1299	0.055*
C15	0.2754 (2)	0.53119 (16)	0.00809 (15)	0.0459 (5)
H15	0.3078	0.4636	-0.0037	0.055*
C8	0.0829 (3)	0.45512 (17)	0.20297 (16)	0.0508 (6)
H8	0.0247	0.5151	0.2101	0.061*
N1	0.2898 (2)	0.79802 (13)	-0.08543 (13)	0.0518 (5)
C12	0.1844 (3)	0.73163 (16)	0.04341 (14)	0.0481 (5)
H12	0.1548	0.7993	0.0568	0.058*
C6	0.1595 (2)	0.26655 (16)	0.25224 (16)	0.0469 (5)
C3	0.3204 (3)	0.08209 (17)	0.23089 (17)	0.0509 (6)
C14	0.3057 (2)	0.61262 (16)	-0.04685 (14)	0.0456 (5)
H14	0.3561	0.599	-0.0957	0.055*
C4	0.3608 (3)	0.13662 (17)	0.31339 (16)	0.0519 (6)
H4	0.4425	0.1129	0.3616	0.062*
C11	0.1517 (2)	0.64926 (17)	0.09597 (15)	0.0476 (5)
H11	0.0972	0.6622	0.1431	0.057*
C7	0.0693 (3)	0.36611 (18)	0.26236 (17)	0.0547 (6)
01	-0.0115 (2)	0.37083 (15)	0.32101 (14)	0.0849 (6)
C5	0.2780 (3)	0.22710 (17)	0.32357 (15)	0.0501 (5)
C2	0.2015 (3)	0.11710 (19)	0.15886 (17)	0.0576 (6)
H2	0.1737	0.079	0.1036	0.069*
C17	0.2722 (3)	0.90604 (18)	-0.05879 (18)	0.0685 (7)
H17A	0.1625	0.9193	-0.0574	0.103*
H17B	0.304	0.9521	-0.1033	0.103*
H17C	0.3383	0.9185	0.0021	0.103*
C16	0.3630 (3)	0.77905 (19)	-0.16414 (17)	0.0665 (7)
H16A	0.4725	0.7587	-0.1417	0.1*
H16B	0.3584	0.8422	-0.2006	0.1*
H16C	0.3064	0.7238	-0.2022	0.1*
C1	0.1244 (3)	0.20911 (18)	0.16968 (17)	0.0577 (6)
H1	0.046	0.2339	0.1202	0.069*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0823 (5)	0.0539 (4)	0.0800 (5)	0.0084 (3)	0.0288 (4)	0.0038 (3)
Cl2	0.1090 (6)	0.0798 (5)	0.0577 (4)	0.0164 (4)	-0.0008 (4)	-0.0118 (3)
C13	0.0447 (12)	0.0425 (12)	0.0377 (11)	-0.0018 (9)	0.0062 (9)	0.0013 (9)
C10	0.0437 (11)	0.0407 (12)	0.0406 (12)	0.0008 (9)	0.0110 (10)	0.0024 (9)
C9	0.0442 (12)	0.0439 (12)	0.0499 (13)	0.0026 (9)	0.0098 (10)	0.0023 (10)
C15	0.0531 (13)	0.0363 (11)	0.0508 (13)	0.0034 (10)	0.0166 (11)	-0.0031 (10)
C8	0.0476 (12)	0.0472 (13)	0.0604 (15)	0.0057 (10)	0.0178 (11)	0.0116 (11)
N1	0.0671 (12)	0.0415 (10)	0.0496 (11)	-0.0017 (9)	0.0187 (9)	0.0063 (8)
C12	0.0629 (14)	0.0365 (11)	0.0466 (13)	0.0078 (10)	0.0158 (11)	0.0002 (9)
C6	0.0451 (12)	0.0426 (12)	0.0546 (14)	-0.0054 (10)	0.0142 (11)	0.0104 (10)

supplementary materials

C3	0.0543 (14)	0.0443 (13)	0.0585 (15)	-0.0036 (10)	0.0219 (12)	0.0083 (11)
C14	0.0524 (13)	0.0448 (12)	0.0430 (12)	0.0010 (10)	0.0176 (10)	-0.0010 (10)
C4	0.0545 (13)	0.0502 (13)	0.0496 (14)	0.0017 (11)	0.0081 (11)	0.0124 (11)
C11	0.0556 (13)	0.0496 (13)	0.0413 (12)	0.0050 (10)	0.0189 (10)	0.0009 (10)
C7	0.0451 (12)	0.0573 (14)	0.0645 (15)	-0.0020 (11)	0.0181 (12)	0.0118 (12)
01	0.0906 (13)	0.0778 (13)	0.1068 (15)	0.0194 (10)	0.0665 (12)	0.0326 (11)
C5	0.0550 (13)	0.0484 (13)	0.0480 (13)	-0.0035 (11)	0.0135 (11)	0.0069 (10)
C2	0.0610 (15)	0.0550 (15)	0.0539 (14)	-0.0095 (12)	0.0061 (12)	-0.0027 (11)
C17	0.0926 (19)	0.0432 (14)	0.0702 (17)	-0.0039 (13)	0.0186 (15)	0.0076 (12)
C16	0.0852 (18)	0.0624 (16)	0.0571 (15)	-0.0086 (13)	0.0268 (14)	0.0111 (12)
C1	0.0508 (13)	0.0598 (15)	0.0562 (15)	-0.0032 (12)	-0.0019 (11)	0.0079 (12)

Geometric parameters (Å, °)

Cl1—C3	1.738 (2)	C6—C1	1.389 (3)
Cl2—C5	1.739 (2)	C6—C7	1.507 (3)
C13—N1	1.369 (2)	C3—C4	1.372 (3)
C13—C14	1.402 (3)	C3—C2	1.372 (3)
C13—C12	1.405 (3)	C14—H14	0.930
C10-C11	1.393 (3)	C4—C5	1.376 (3)
C10—C15	1.400 (3)	C4—H4	0.9300
С10—С9	1.443 (3)	C11—H11	0.930
С9—С8	1.338 (3)	C7—O1	1.218 (3)
С9—Н9	0.930	C2—C1	1.369 (3)
C15—C14	1.371 (3)	C2—H2	0.930
С15—Н15	0.930	C17—H17A	0.960
С8—С7	1.448 (3)	C17—H17B	0.960
С8—Н8	0.930	C17—H17C	0.960
N1—C17	1.444 (3)	C16—H16A	0.960
N1-C16	1.450 (3)	C16—H16B	0.960
C12—C11	1.365 (3)	C16—H16C	0.960
С12—Н12	0.930	C1—H1	0.930
C6—C5	1.383 (3)		
N1-C13-C14	121.63 (18)	C3—C4—C5	118.8 (2)
N1-C13-C12	121.38 (18)	C3—C4—H4	120.6
C14—C13—C12	116.97 (18)	C5—C4—H4	120.6
C11-C10-C15	116.45 (18)	C12—C11—C10	122.21 (19)
С11—С10—С9	123.63 (19)	C12—C11—H11	118.9
С15—С10—С9	119.89 (18)	C10-C11-H11	118.9
C8—C9—C10	128.1 (2)	O1—C7—C8	121.3 (2)
С8—С9—Н9	116.0	O1—C7—C6	119.6 (2)
С10—С9—Н9	116.0	C8—C7—C6	119.03 (19)
C14-C15-C10	122.09 (19)	C4—C5—C6	122.1 (2)
C14—C15—H15	119.0	C4—C5—Cl2	117.72 (18)
С10—С15—Н15	119.0	C6—C5—Cl2	120.17 (18)
С9—С8—С7	125.7 (2)	C1—C2—C3	118.9 (2)
С9—С8—Н8	117.2	C1—C2—H2	120.5
С7—С8—Н8	117.2	C3—C2—H2	120.5
C13—N1—C17	121.42 (18)	N1—C17—H17A	109.5

C13—N1—C16	120.27 (18)	N1—C17—H17B	109.5
C17—N1—C16	117.56 (18)	H17A—C17—H17B	109.5
C11—C12—C13	121.25 (19)	N1—C17—H17C	109.5
C11—C12—H12	119.4	H17A—C17—H17C	109.5
C13—C12—H12	119.4	H17B—C17—H17C	109.5
C5—C6—C1	116.9 (2)	N1—C16—H16A	109.5
C5—C6—C7	122.5 (2)	N1-C16-H16B	109.5
C1—C6—C7	120.6 (2)	H16A—C16—H16B	109.5
C4—C3—C2	121.1 (2)	N1—C16—H16C	109.5
C4—C3—Cl1	119.27 (18)	H16A—C16—H16C	109.5
C2—C3—Cl1	119.55 (19)	H16B—C16—H16C	109.5
C15-C14-C13	120.99 (19)	C2-C1-C6	122.1 (2)
C15-C14-H14	119.5	С2—С1—Н1	118.9
C13—C14—H14	119.5	С6—С1—Н1	118.9
С11—С10—С9—С8	11.4 (4)	C9—C10—C11—C12	176.6 (2)
C15—C10—C9—C8	-170.5 (2)	C9—C8—C7—O1	177.9 (2)
C11-C10-C15-C14	-0.1 (3)	C9—C8—C7—C6	-0.9 (3)
C9—C10—C15—C14	-178.3 (2)	C5—C6—C7—O1	-61.9 (3)
C10—C9—C8—C7	-176.3 (2)	C1—C6—C7—O1	117.2 (3)
C14—C13—N1—C17	-168.4 (2)	C5—C6—C7—C8	117.0 (2)
C12-C13-N1-C17	13.1 (3)	C1—C6—C7—C8	-64.0 (3)
C14—C13—N1—C16	1.6 (3)	C3—C4—C5—C6	-2.3 (3)
C12-C13-N1-C16	-177.0 (2)	C3—C4—C5—Cl2	179.29 (16)
N1-C13-C12-C11	177.7 (2)	C1—C6—C5—C4	1.5 (3)
C14—C13—C12—C11	-0.9 (3)	C7—C6—C5—C4	-179.42 (19)
C10-C15-C14-C13	1.2 (3)	C1—C6—C5—Cl2	179.91 (16)
N1-C13-C14-C15	-179.3 (2)	C7—C6—C5—Cl2	-1.0 (3)
C12-C13-C14-C15	-0.7 (3)	C4—C3—C2—C1	1.1 (3)
C2—C3—C4—C5	0.9 (3)	Cl1—C3—C2—C1	-176.93 (17)
Cl1—C3—C4—C5	178.95 (16)	C3—C2—C1—C6	-1.9 (3)
C13-C12-C11-C10	2.1 (3)	C5—C6—C1—C2	0.6 (3)
C15-C10-C11-C12	-1.5 (3)	C7—C6—C1—C2	-178.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C12—H12···O1 ⁱ	0.93	2.55	3.252 (3)	132
C4—H4····Cg1 ⁱⁱ	0.93	2.95	3.784 (3)	150
(1)	:) +1 1/2 +1/2			

Symmetry codes: (i) -x, y+1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2.

Fig. 2